Differentiation Question 289

Question: If $ y={{\sin }^{-1}}(x\sqrt{1-x}+\sqrt{x}\sqrt{1-x^{2})}, $ then $ \frac{dy}{dx}= $

[Roorkee 1981; MP PET 2004]

Options:

A) $ \frac{-2x}{\sqrt{1-x^{2}}}+\frac{1}{2\sqrt{x-x^{2}}} $

B) $ \frac{-1}{\sqrt{1-x^{2}}}-\frac{1}{2\sqrt{x-x^{2}}} $

C) $ \frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2\sqrt{x-x^{2}}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Putting $ x=\sin A $ and $ \sqrt{x}=\sin B $

$ y={{\sin }^{-1}}(\sin A\sqrt{1-{{\sin }^{2}}B}+\sin B\sqrt{1-{{\sin }^{2}}A}) $

$ ={{\sin }^{-1}}[\sin (A+B)]=A+B={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} $

Therefore $ \frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2\sqrt{x-x^{2}}} $ .