Differentiation Question 29

Question: $ \frac{d}{dx}[ {{\sin }^{2}}{{\cot }^{-1}}{ \sqrt{\frac{1-x}{1+x}} } ] $ equals

[MP PET 2002]

Options:

A) $ -1 $

B) $ \frac{1}{2} $

C) $ -\frac{1}{2} $

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ y={{\sin }^{2}}{{\cot }^{-1}}{ \sqrt{\frac{1-x}{1+x}} } $

Put $ x=\cos \theta \Rightarrow \theta ={{\cos }^{-1}}x $

Therefore $ y={{\sin }^{2}}{{\cot }^{-1}}{ \sqrt{\frac{1-\cos \theta }{1+\cos \theta }} }={{\sin }^{2}}{{\cot }^{-1}}( \tan \frac{\theta }{2} ) $

Therefore $ y={{\sin }^{2}}( \frac{\pi }{2}-\frac{\theta }{2} ) $

Therefore $ \frac{dy}{d\theta }=2\sin ( \frac{\pi }{2}-\frac{\theta }{2} ).\cos ( \frac{\pi }{2}-\frac{\theta }{2} )( -\frac{1}{2} ) $

Therefore $ \frac{dy}{d\theta }=-\frac{\sin (\pi -\theta )}{2}=-\frac{\sin \theta }{2}=\frac{-1}{2}\sqrt{1-x^{2}} $

Therefore $ \frac{dy}{dx}=\frac{dy}{d\theta }.\frac{d\theta }{dx}=\frac{-1}{2}\sqrt{1-x^{2}}.\frac{d}{dx}({{\cos }^{-1}}x)=\frac{1}{2} $ .