Differentiation Question 290

Question: Let $ f(x)=e^{x} $ , $ g(x)={{\sin }^{-1}}x $ and $ h(x)=f(g(x)), $ then $ h’(x)/h(x)= $

[EAMCET 2002]

Options:

A) $ {e^{{{\sin }^{-1}}x}} $

B) $ 1/\sqrt{1-x^{2}} $

C) $ {{\sin }^{-1}}x $

D) $ 1/(1-x^{2}) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=e^{x} $ and $ g(x)={{\sin }^{-1}}x $ and $ h(x)=f(g(x)) $

Therefore $ h(x) $ = $ f({{\sin }^{-1}}x)={e^{{{\sin }^{-1}}x}} $

\ $ h(x)={e^{{{\sin }^{-1}}}}x $

Therefore $ {h}’(x)={e^{{{\sin }^{-1}}x}}.\frac{1}{\sqrt{1-x^{2}}} $

Therefore $ \frac{{h}’(x)}{h(x)}=\frac{1}{\sqrt{1-x^{2}}} $ .