Differentiation Question 291

Question: $ {10^{-x\tan x}}[ \frac{d}{dx}({10^{x\tan x}}) ] $ is equal to

[AMU 2000]

Options:

A) $ \tan x+x{{\sec }^{2}}x $

B) $ \ln 10(\tan x+x{{\sec }^{2}}x) $

C) $ \ln 10( \tan x+\frac{x}{{{\cos }^{2}}x}+\tan x\sec x ) $

D) $ x\tan xln10 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ {10^{-x\tan x}}\frac{d}{dx}({10^{x\tan x}}) $

= $ {10^{-x\tan x}}{{.10}^{x\tan x}}.\log 10(\tan x+x{{\sec }^{2}}x) $

= $ \log 10(\tan x+x{{\sec }^{2}}x) $ .