Differentiation Question 296

Question: If $ y=\sqrt{\sin x+y}, $ then $ \frac{dy}{dx} $ equals to

[RPET 2001]

Options:

A) $ \frac{\sin x}{2y-1} $

B) $ \frac{\cos x}{2y-1} $

C) $ \frac{\sin x}{2y+1} $

D) $ \frac{\cos x}{2y+1} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=\sqrt{\sin x+y}, $

Therefore $ y^{2}=\sin x+y $

Differentiate with respect to x, $ 2y.\frac{dy}{dx}=\cos x+\frac{dy}{dx} $

Therefore $ \frac{dy}{dx}(2y-1)=\cos x $

Therefore $ \frac{dy}{dx}=\frac{\cos x}{2y-1} $ .