Differentiation Question 299

Question: If $ x=y\sqrt{1-y^{2},} $ then $ \frac{dy}{dx}= $

[MP PET 2001]

Options:

A) 0

B) x

C) $ \frac{\sqrt{1-y^{2}}}{1-2y^{2}} $

D) $ \frac{\sqrt{1-y^{2}}}{1+2y^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x=y\sqrt{1-y^{2}} $

Differentiate with respect to x, $ 1=\frac{dy}{dx}\sqrt{1-y^{2}}+y.\frac{1}{2\sqrt{1-y^{2}}}.(-2y).\frac{dy}{dx} $

Therefore $ 1=\frac{dy}{dx}\sqrt{1-y^{2}}-\frac{y^{2}}{\sqrt{1-y^{2}}}.\frac{dy}{dx} $

Therefore $ 1=\frac{dy}{dx}[ \frac{1-y^{2}-y^{2}}{\sqrt{1-y^{2}}} ] $

Therefore $ 1=\frac{dy}{dx}[ \frac{1-2y^{2}}{\sqrt{1-y^{2}}} ] $

$ \frac{dy}{dx}=\frac{\sqrt{1-y^{2}}}{1-2y^{2}} $ .