Differentiation Question 3

Question: If $ y={{(\tan x)}^{\cot x}} $ , then $ \frac{dy}{dx}\backslash $ =

[AISSE 1985]

Options:

A) $ y\cos e{c^{2}}x(1-\log \tan x) $

B) $ ycose{c^{2}}x(1+\log \tan x) $

C) $ y\cos e{c^{2}}x(\log \tan x) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{(\tan x)}^{\cot x}}\Rightarrow \log y=\cot x\log \tan x $

Therefore $ \frac{1}{y}\frac{dy}{dx}=cose{c^{2}}x-\log \tan x.cose{c^{2}}x $

Therefore $ \frac{dy}{dx}=ycose{c^{2}}x(1-\log \tan x) $ .