Differentiation Question 300

Question: If $ y={{\tan }^{-1}}[ \frac{\sin x+\cos x}{\cos x-\sin x} ], $ then $ \frac{dy}{dx} $ is

[UPSEAT 2001]

Options:

A) $ 1/2 $

B) $ \pi /4 $

C) 0

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

$ y={{\tan }^{-1}}[ \frac{\sin x+\cos x}{\cos x-\sin x} ] $

$ ={{\tan }^{-1}}[ \frac{1+\tan x}{1-\tan x} ] $

$ ={{\tan }^{-1}}[ \frac{\tan (\pi /4)+\tan x}{1-\tan (\pi /4)\tan x} ] $

$ ={{\tan }^{-1}}\tan (\pi /4+x) $

Therefore $ y=(\pi /4)+x $

Therefore $ dy/dx=1 $ .