Differentiation Question 301

Question: If $ x^{2}+y^{2}=t-\frac{1}{t}, $

$ x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}} $ , then $ x^{3}y\frac{dy}{dx}= $

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: A

Solution:

$ x^{4}+y^{4}={{( t-\frac{1}{t} )}^{2}}+2={{(x^{2}+y^{2})}^{2}}+2 $

Therefore $ x^{2}y^{2}=-1\Rightarrow y^{2}=-\frac{1}{x^{2}} $

Differentiating, we get $ 2y\frac{dy}{dx}=\frac{2}{x^{3}} $ or $ x^{3}y\frac{dy}{dx}=1 $ .