Differentiation Question 303

Question: $ \frac{d}{dx}[ {{\tan }^{-1}}( \frac{a-x}{1+ax} ) ]= $

[Karnataka CET 2001; Pb. CET 2001]

Options:

A) $ -\frac{1}{1+x^{2}} $

B) $ \frac{1}{1+a^{2}}-\frac{1}{1+x^{2}} $

C) $ \frac{1}{1+{{( \frac{a-x}{1+ax} )}^{2}}} $

D) $ \frac{-1}{\sqrt{1-{{( \frac{a-x}{1+ax} )}^{2}}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d}{dx}[ {{\tan }^{-1}}( \frac{a-x}{1+ax} ) ]. $

= $ \frac{d}{dx}[{{\tan }^{-1}}a-{{\tan }^{-1}}x]=0-\frac{1}{1+x^{2}}=-\frac{1}{1+x^{2}} $ .