Differentiation Question 304

Question: $ \frac{d}{dx}\log |x|=……,(x\ne 0) $

Options:

A) $ \frac{1}{x} $

B) $ -\frac{1}{x} $

C) x

D) $ -x $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \log |x|=\log x $ , if $ x>0 $

$ =\log (-x) $ , if $ x<0 $

Hence $ \frac{d}{dx}{ \log |x| }=\frac{1}{x} $ ,if $ x>0 $

$ =( \frac{1}{-x} )(-1)=\frac{1}{x} $ ,if $ x<0 $

Thus $ \frac{d}{dx}{ \log |x| }=\frac{1}{x} $ , if $ x\ne 0 $ .