Differentiation Question 304
Question: $ \frac{d}{dx}\log |x|=……,(x\ne 0) $
Options:
A) $ \frac{1}{x} $
B) $ -\frac{1}{x} $
C) x
D) $ -x $
Show Answer
Answer:
Correct Answer: A
Solution:
$ \log |x|=\log x $ , if $ x>0 $
$ =\log (-x) $ , if $ x<0 $
Hence $ \frac{d}{dx}{ \log |x| }=\frac{1}{x} $ ,if $ x>0 $
$ =( \frac{1}{-x} )(-1)=\frac{1}{x} $ ,if $ x<0 $
Thus $ \frac{d}{dx}{ \log |x| }=\frac{1}{x} $ , if $ x\ne 0 $ .