Differentiation Question 310

Question: The differential of $ {e^{x^{3}}} $ with respect to $ \log x $ is

[Karnataka CET 2002]

Options:

A) $ {e^{x^{3}}} $

B) $ 3x^{2}{e^{x^{3}}} $

C) $ 3x^{3}{e^{x^{3}}} $

D) $ 3x^{2}{e^{x^{3}}}+3x^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y={e^{x^{3}}} $ , $ z=\log x $

Therefore $ \frac{dy}{dx}={e^{x^{3}}}.(3x^{2})=3x^{2}{e^{x^{3}}} $ …..(i) and $ \frac{dz}{dx}=\frac{1}{x} $ ….(ii)

Therefore $ \frac{dy}{dz}=\frac{3x^{2}{e^{x^{3}}}}{( 1/x )}=3x^{3}{e^{x^{3}}} $ .