Differentiation Question 311

Question: If $ x=\exp { {{\tan }^{-1}}( \frac{y-x^{2}}{x^{2}} ) } $ , then $ \frac{dy}{dx} $ equals

[MP PET 2002]

Options:

A) $ 2x[1+\tan (\log x)]+x{{\sec }^{2}}(\log x) $

B) $ x[1+\tan (\log x)]+{{\sec }^{2}}(\log x) $

C) $ 2x[1+\tan (\log x)]+x^{2}{{\sec }^{2}}(\log x) $

D) $ 2x[1+\tan (\log x)]+{{\sec }^{2}}(\log x) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x=\exp { {{\tan }^{-1}}( \frac{y-x^{2}}{x^{2}} ) } $

Therefore $ \log x={{\tan }^{-1}}( \frac{y-x^{2}}{x^{2}} ) $

Therefore $ \frac{y-x^{2}}{x^{2}}=\tan (\log x) $

Therefore $ y=x^{2}\tan (\log x)+x^{2} $

Therefore $ \frac{dy}{dx}=2x.\tan (\log x)+x^{2}.\frac{{{\sec }^{2}}(\log x)}{x}+2x $

Therefore $ \frac{dy}{dx}=2x\tan (\log x)+x{{\sec }^{2}}(\log x)+2x $

Therefore $ \frac{dy}{dx}=2x[1+\tan (\log x)]+x{{\sec }^{2}}(\log x) $ .