Differentiation Question 313

Question: If $ f(x)=\sqrt{ax}+\frac{a^{2}}{\sqrt{ax}}, $ then $ f’(a)= $

[EAMCET 2002]

Options:

A) - 1

B) 1

C) 0

D) a

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=\sqrt{ax}+\frac{a^{2}}{\sqrt{ax}}, $ then

Therefore $ {f}’(x)=\frac{\sqrt{a}}{2\sqrt{x}}+\frac{a^{2}}{\sqrt{a}}( \frac{-1}{2}{x^{-3/2}} ) $

Therefore $ {f}’(x)=\frac{\sqrt{a}}{2\sqrt{x}}-\frac{a^{2}}{2\sqrt{a}}{x^{-3/2}} $

Therefore $ {f}’(a)=\frac{\sqrt{a}}{2\sqrt{a}}-\frac{a^{2}}{2\sqrt{a}.{a^{3/2}}} $

Therefore $ {f}’(a)=\frac{1}{2}-\frac{a^{2}}{2a^{2}}=0 $ .