Differentiation Question 315

Question: If $ \sin y+{e^{-x\cos y}}=e, $ then $ \frac{dy}{dx} $ at $ (1,\pi ) $ is

[Kerala (Engg.) 2002]

Options:

A) $ \sin y $

B) $ -x\cos y $

C) $ e $

D) $ \sin y-x\cos y $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sin y+{e^{-x\cos y}}=e, $

Therefore $ \cos y\frac{dy}{dx}+{e^{-x\cos y}}{ (-x)( -\sin y\frac{dy}{dx} )+\cos y(-1) }=0 $

Therefore $ \cos y\frac{dy}{dx}+x\sin y{e^{-x\cos y}}\frac{dy}{dx}-\cos y{e^{-x\cos y}}=0 $

Therefore $ \frac{dy}{dx}=\frac{\cos y{e^{-x\cos y}}}{\cos y+x\sin y{e^{-x\cos y}}} $

Therefore $ {{( \frac{dy}{dx} )} _{(1,\pi )}}=\frac{\cos \pi {e^{-\cos \pi }}}{\cos \pi +\sin \pi {e^{-\cos \pi }}} $ = $ \frac{(-1)e}{-1+0}=e $ .