Differentiation Question 327

Question: If $ x^{m}y^{n}={{(x+y)}^{m+n}} $ then $ {{. \frac{dy}{dx} |} _{x=1,y=2}} $ is equal to

[J & K 2005]

Options:

A) ½

B) 2

C) 2m/n

D) m/ 2n

Show Answer

Answer:

Correct Answer: B

Solution:

$ x^{m}y^{n}={{(x+y)}^{m+n}} $

$ x^{m}.(n{y^{n-1}}).\frac{dy}{dx}+y^{n}(m{x^{m-1}})=(m+n){{(x+y)}^{m+n-1}} $

$ ( 1+\frac{dy}{dx} ) $

After solving, we find $ \frac{dy}{dx}=\frac{y}{x} $ and $ {{. \frac{dy}{dx} |} _{x=1,y=2}}=\frac{2}{1}=2 $ .