Differentiation Question 328

Question: If $ y=\frac{e^{x}+{e^{-x}}}{e^{x}-{e^{-x}}} $ then $ \frac{dy}{dx} $ is equal to

[Karnataka CET 2005]

Options:

A) $ \sec {h^{2}}x $

B) $ cosec{h^{2}}x $

C) $ -\sec {h^{2}}x $

D) $ -cosec{h^{2}}x $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=\frac{e^{x}+{e^{-x}}}{e^{x}-{e^{-x}}}=\frac{\frac{e^{x}+{e^{-x}}}{2}}{\frac{e^{x}-{e^{-x}}}{2}}=\frac{\cosh x}{\sinh x}=\coth x $

$ \frac{dy}{dx}=-cosec{h^{2}}x $ .