Differentiation Question 330

Question: Let $ f(x) $ be a polynomial function of the second degree. If $ f(1)=f(-1) $ and $ a_1,a_2,a_3 $ are in A.P. then $ {f}’(a_1) $ , $ {f}’(a_2) $ , $ {f}’(a_3) $ are in

[AMU 2005]

Options:

A) A.P

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ f(x)=ax^{2}+bx+c $

Then $ f’(x)=2ax+b $ also, $ f(1)=f(-1) $

$ a+b+c=a-b+c $

Therefore b = 0
$ \therefore $ $ {f}’(x)=2ax $ ;
$ \therefore $ $ {f}’(a_1)=2aa_1 $

$ {f}’(a{ _2})=2aa_2 $ , $ {f}’(a_3)=2aa_3 $

As $ a_1,a_2,a_3 $ are in A.P. $ {f}’(a_1),{f}’(a_2),{f}’(a_3) $ are in A.P.