Differentiation Question 339

Question: If $ f(x)=\cos x\cos 2x\cos 4x\cos 8x\cos 16x $ , then $ {f}’( \frac{\pi }{4} ) $ is

[AMU 2005]

Options:

A) $ \sqrt{2} $

B) $ \frac{1}{\sqrt{2}} $

C) 1

D) $ \frac{\sqrt{3}}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{2\sin x.\cos x.\cos 2x.\cos 4x.\cos 8x.\cos 16x}{2\sin x} $

$ =\frac{\sin 32x}{2^{5}\sin x} $

\ $ f’(x)=\frac{1}{32}.\frac{32\cos 32x.\sin x-\cos x.\sin 32x}{{{\sin }^{2}}x} $

$ f’( \frac{\pi }{4} )=\frac{32.\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\times 0}{32{{( \frac{1}{\sqrt{2}} )}^{2}}} $ = $ \sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें