Differentiation Question 34

Question: $ \underset{n\to \infty }{\mathop{\lim }}{{( \frac{n^{2}-n+1}{n^{2}-n-1} )}^{n(n-1)}} $ is equal to

Options:

A) $ e $

B) $ e^{2} $

C) $ {e^{-1}} $

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \underset{n\to \infty }{\mathop{\lim }}{{( \frac{n^{2}-n+1}{n^{2}-n-1} )}^{n(n-1)}}=\underset{n\to \infty }{\mathop{\lim }}{{( \frac{n(n-1)+1}{n(n-1)-1} )}^{n(n-1)}} $

$ =\underset{n\to \infty }{\mathop{\lim }}\frac{{{( 1+\frac{1}{n(n-1)} )}^{n(n-1)}}}{{{( 1-\frac{1}{n(n-1)} )}^{n(n-1)}}}=\frac{e}{{e^{-1}}}=e^{2} $