Differentiation Question 341

Question: If $ y={{\tan }^{-1}}( \frac{a\cos x-b\sin x}{b\cos x+a\sin x} ) $ then $ \frac{dy}{dx}= $

[Kerala (Engg.) 2005]

Options:

A) 2

B) - 1

C) $ \frac{a}{b} $

D) 0

E) $ \frac{b}{a} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y={{\tan }^{-1}}( \frac{a\cos x-b\sin x}{b\cos x+a\sin x} ) $

Let $ a=r\sin \theta $ and $ b=r\cos \theta $

\ $ y={{\tan }^{-1}}[ \frac{r\sin (\theta -x)}{r\cos (\theta -x)} ] $

$ y=\theta -x $ ; $ y={{\tan }^{-1}}( \frac{a}{b} )-x $

$ \frac{dy}{dx}=-1 $ .