Differentiation Question 342

Question: If $ y=\sin (2{{\sin }^{-1}}x), $ then $ \frac{dy}{dx}= $

[AI CBSE 1983]

Options:

A) $ \frac{2-4x^{2}}{\sqrt{1-x^{2}}} $

B) $ \frac{2+4x^{2}}{\sqrt{1-x^{2}}} $

C) $ \frac{2-4x^{2}}{\sqrt{1+x^{2}}} $

D) $ \frac{2+4x^{2}}{\sqrt{1+x^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ x=\sin \theta \Rightarrow 2{{\sin }^{-1}}x=2\theta $

Therefore $ y=\sin 2\theta $

Therefore $ \frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta }=\frac{2\cos 2\theta }{\cos \theta } $

$ =\frac{2(1-2{{\sin }^{2}}\theta )}{\sqrt{1-{{\sin }^{2}}\theta }}=\frac{2-4x^{2}}{\sqrt{1-x^{2}}} $ .