Differentiation Question 344

Question: $ \frac{d}{dx}{{\cos }^{-1}}\frac{x-{x^{-1}}}{x+{x^{-1}}} $ =

[DSSE 1985; Rookee 1963]

Options:

A) $ \frac{1}{1+x^{2}} $

B) $ \frac{-1}{1+x^{2}} $

C) $ \frac{2}{1+x^{2}} $

D) $

$ $ \frac{-2}{1+x^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

Putting $ x=\cot \theta $

$ y={{\cos }^{-1}}( \frac{x-{x^{-1}}}{x+{x^{-1}}} )={{\cos }^{-1}}( \frac{x^{2}-1}{x^{2}+1} ) $

$ ={{\cos }^{-1}}(\cos 2\theta )=2\theta \Rightarrow \frac{dy}{dx}=\frac{-2}{1+x^{2}} $ .