Differentiation Question 345

Question: If $ y={{\sin }^{-1}}\frac{2x}{1+x^{2}}+{{\sec }^{-1}}\frac{1+x^{2}}{1-x^{2}} $ , then $ \frac{dy}{dx} $ =

[RPET 1996]

Options:

A) $ \frac{4}{1-x^{2}} $

B) $ \frac{1}{1+x^{2}} $

C) $ \frac{4}{1-x^{2}} $

D) $ \frac{-4}{1+x^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Putting $ x=\tan \theta $

$ y={{\sin }^{-1}}( \frac{2\tan \theta }{1+{{\tan }^{2}}\theta } )+{{\sec }^{-1}}( \frac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } ) $

$ =2\theta +2\theta =4{{\tan }^{-1}}x $ . $ y={{\sin }^{-1}}( \frac{2\tan \theta }{1+{{\tan }^{2}}\theta } )+{{\sec }^{-1}}( \frac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } ) $

Therefore $ x=0 $ .