Differentiation Question 351
Question: If $ y=a_0+a_1x+a_2x^{2}+…..+a _{n}x^{n}, $ then $ y _{n}= $
Options:
A) $ n! $
B) $ n!a _{n}x $
C) $ n!a _{n} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ =2\frac{a^{2}}{2}\sin (\pi -2\theta )+\frac{1}{2}a^{2}\sin 4\theta $
$ y_1=a_1+2a_2x+……+na _{n}{x^{n-1}} $
$ y_2=2a_2+6a_3x+……+n(n-1)a _{n}{x^{n-2}} $
……………………………….. ……………………………….. $ y _{n}=n!a _{n} $ .