Differentiation Question 351

Question: If $ y=a_0+a_1x+a_2x^{2}+…..+a _{n}x^{n}, $ then $ y _{n}= $

Options:

A) $ n! $

B) $ n!a _{n}x $

C) $ n!a _{n} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ =2\frac{a^{2}}{2}\sin (\pi -2\theta )+\frac{1}{2}a^{2}\sin 4\theta $

$ y_1=a_1+2a_2x+……+na _{n}{x^{n-1}} $

$ y_2=2a_2+6a_3x+……+n(n-1)a _{n}{x^{n-2}} $

……………………………….. ……………………………….. $ y _{n}=n!a _{n} $ .