Differentiation Question 352

Question: If $ y=A\cos nx+B\sin nx, $ then $ \frac{d^{2}y}{dx^{2}}= $

[Karnataka CET 1996]

Options:

A) $ n^{2}y $

B) $ -y $

C) $ -n^{2}y $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=A\cos (nx)+B\sin (nx) $

$ \therefore dy/dx=-nA\sin (nx)+nB\cos (nx) $

Again $ \frac{d^{2}y}{dx^{2}}=-n^{2}A\cos (nx)-n^{2}B\sin (nx) $

$ =-n^{2}[A\cos (nx)+B\sin (nx)] $

Therefore $ \frac{d^{2}y}{dx^{2}}=-n^{2}y $ .