Differentiation Question 353

Question: $ \frac{d^{n}}{dx^{n}}(e^{2x}+{e^{-2x}})= $

Options:

A) $ e^{2x}+{{(-1)}^{n}}{e^{-2x}} $

B) $ 2^{n}(e^{2x}-{e^{-2x}}) $

C) $ 2^{n}[e^{2x}+{{(-1)}^{n}}{e^{-2x}}] $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{d}{dx}[e^{2x}+{e^{-2x}}]=2e^{2x}+2{e^{-2x}}=2^{1}[e^{2x}-{e^{-2x}}] $

$ \frac{d^{2}}{dx^{2}}[e^{2x}+{e^{-2x}}]=2^{2}[e^{2x}+{e^{-2x}}] $

$ \frac{d^{2}}{dx^{2}}[e^{2x}+{e^{-2x}}]=2^{2}[e^{2x}-{e^{-2x}}] $

…………………………………………… …………………………………………… $ \frac{d^{n}}{dx^{n}}[e^{2x}+{e^{-2x}}]=2^{n}[e^{2x}+{{(-1)}^{n}}{e^{-2x}}] $ .