Differentiation Question 354
Question: $ \frac{d}{dx}
[ \log ( x+\frac{1}{x} ) ]= $
[MP PET 1995]
Options:
A) $ ( x+\frac{1}{x} ) $
B) $ \frac{( 1+\frac{1}{x^{2}} )}{( 1+\frac{1}{x} )} $
C) $ \frac{( 1-\frac{1}{x^{2}} )}{( x+\frac{1}{x} )} $
D) $ ( 1+\frac{1}{x} ) $
Show Answer
Answer:
Correct Answer: C
Solution:
$ \frac{d}{dx}{ \log ( x+\frac{1}{x} ) }=\frac{1}{x+\frac{1}{x}}\times \frac{d}{dx}( x+\frac{1}{x} )=\frac{1}{( x+\frac{1}{x} )}( 1-\frac{1}{x^{2}} ) $