Differentiation Question 354

Question: $ \frac{d}{dx}

[ \log ( x+\frac{1}{x} ) ]= $

[MP PET 1995]

Options:

A) $ ( x+\frac{1}{x} ) $

B) $ \frac{( 1+\frac{1}{x^{2}} )}{( 1+\frac{1}{x} )} $

C) $ \frac{( 1-\frac{1}{x^{2}} )}{( x+\frac{1}{x} )} $

D) $ ( 1+\frac{1}{x} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{d}{dx}{ \log ( x+\frac{1}{x} ) }=\frac{1}{x+\frac{1}{x}}\times \frac{d}{dx}( x+\frac{1}{x} )=\frac{1}{( x+\frac{1}{x} )}( 1-\frac{1}{x^{2}} ) $