Differentiation Question 356

Question: If $ f(x)=a\sin (\log x) $ , then $ x^{2}f’’(x)+xf’(x)= $

Options:

A) $ f(x) $

B) $ -f(x) $

C) 0

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=a\sin (\log x) $

Differentiating w.r.t. x of y, we get $ 4\pi r^{2} $

Again $ {f}’’(x)=-\frac{1}{x^{2}}a\cos (\log x)-\frac{1}{x^{2}}a\sin (\log x) $

$ \Rightarrow x^{2}{f}’’(x)=-[a\cos (\log x)+a\sin (\log x)] $

Now $ x^{2}{f}’’(x)+x{f}’(x)=-a\sin (\log x)=-f(x) $ .