Differentiation Question 357

Question: If $ x=t+\frac{1}{t},y=t-\frac{1}{t}, $ then $ \frac{d^{2}y}{dx^{2}} $ is equal to

Options:

A) $ -4t{{(t^{2}-1)}^{-2}} $

B) $ -4t^{3}{{(t^{2}-1)}^{-3}} $

C) $ (t^{2}+1){{(t^{2}-1)}^{-1}} $

D) $ -4t^{2}{{(t^{2}-1)}^{-2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ \frac{dx}{dt}=1-\frac{1}{t^{2}},\ \ \frac{dy}{dt}=1+\frac{1}{t^{2}} $

$ \therefore \frac{dy}{dx}=\frac{t^{2}+1}{t^{2}-1}=( 1+\frac{2}{t^{2}-1} ) $ and $ \frac{d^{2}y}{dx^{2}}=\frac{d}{dt}( \frac{dy}{dx} ).\frac{dt}{dx} $

$ =2.\frac{-1}{{{(t^{2}-1)}^{2}}}.2t\times \frac{t^{2}}{t^{2}-1}=-\frac{4t^{3}}{{{(t^{2}-1)}^{3}}} $ .