Differentiation Question 363

Question: If $ y=a{x^{n+1}}+b{x^{-n}} $ , then $ x^{2}\frac{d^{2}y}{dx^{2}}= $

[Karnataka CET 1993]

Options:

A) $ n(n-1)y $

B) $ n(n+1)y $

C) ny

D) $ n^{2}y $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=a{x^{n+1}}+b{x^{-n}}\Rightarrow \frac{dy}{dx}=(n+1)ax^{n}-nb{x^{-n-1}} $

Therefore $ \frac{d^{2}y}{dx^{2}}=n(n+1)a{x^{n-1}}+n(n+1)b{x^{-n-2}} $

Therefore $ x^{2}\frac{d^{2}y}{dx^{2}}=n(n+1)y $ .