Differentiation Question 365

Question: If $ y=a+bx^{2};a,b $ arbitrary constants, then

[EAMCET 1994]

Options:

A) $ \frac{d^{2}y}{dx^{2}}=2xy $

B) $ x\frac{d^{2}y}{dx^{2}}=\frac{dy}{dx} $

C) $ x\frac{d^{2}y}{dx^{2}}-\frac{dy}{dx}+y=0 $

D) $ x\frac{d^{2}y}{dx^{2}}=2xy $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}=2bx,\ \ \frac{d^{2}y}{dx^{2}}=2b $

Therefore $ x\frac{d^{2}y}{dx^{2}}=2bx=\frac{dy}{dx} $ .