Differentiation Question 365
Question: If $ y=a+bx^{2};a,b $ arbitrary constants, then
[EAMCET 1994]
Options:
A) $ \frac{d^{2}y}{dx^{2}}=2xy $
B) $ x\frac{d^{2}y}{dx^{2}}=\frac{dy}{dx} $
C) $ x\frac{d^{2}y}{dx^{2}}-\frac{dy}{dx}+y=0 $
D) $ x\frac{d^{2}y}{dx^{2}}=2xy $
Show Answer
Answer:
Correct Answer: B
Solution:
$ \frac{dy}{dx}=2bx,\ \ \frac{d^{2}y}{dx^{2}}=2b $
Therefore $ x\frac{d^{2}y}{dx^{2}}=2bx=\frac{dy}{dx} $ .