Differentiation Question 368
Question: If $ x=t^{2} $ , $ y=t^{3} $ , then $ \frac{d^{2}y}{dx^{2}} $ =
[EAMCET 1994]
Options:
A) $ \frac{3}{2} $
B) $ \frac{3}{(4t)} $
C) $ \frac{3}{2(t)} $
D) $ \frac{3t}{2} $
Show Answer
Answer:
Correct Answer: B
Solution:
$ \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{3t^{2}}{2t}=\frac{3}{2}t=\frac{3}{2}\sqrt{x}\Rightarrow \frac{d^{2}y}{dx^{2}}=\frac{3}{4\sqrt{x}}=\frac{3}{4t} $ .