Differentiation Question 368

Question: If $ x=t^{2} $ , $ y=t^{3} $ , then $ \frac{d^{2}y}{dx^{2}} $ =

[EAMCET 1994]

Options:

A) $ \frac{3}{2} $

B) $ \frac{3}{(4t)} $

C) $ \frac{3}{2(t)} $

D) $ \frac{3t}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{3t^{2}}{2t}=\frac{3}{2}t=\frac{3}{2}\sqrt{x}\Rightarrow \frac{d^{2}y}{dx^{2}}=\frac{3}{4\sqrt{x}}=\frac{3}{4t} $ .