Differentiation Question 37

Question: $ \underset{x\to \infty }{\mathop{\lim }}{{( \frac{x^{2}+5x+3}{x^{2}+x+3} )}^{1/x}} $ is equal to

Options:

A) $ e^{4} $

B) $ e^{2} $

C) $ e^{3} $

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \underset{x\to \infty }{\mathop{\lim }}-{{( \frac{x^{2}+5x+3}{x^{2}+x+3} )}^{1/x}}=\underset{x\to \infty }{\mathop{\lim }}{{( \frac{1+\frac{5}{x}+\frac{3}{x^{2}}}{1+\frac{1}{x}+\frac{3}{x^{3}}} )}^{1/x}}=1^{o}=1 $