Differentiation Question 371

Question: If $ y=x\log ( \frac{x}{a+bx} ) $ , then $ x^{3}\frac{d^{2}y}{dx^{2}}= $

[WB JEE 1991; Roorkee 1976]

Options:

A) $ x\frac{dy}{dx}-y $

B) $ {{( x\frac{dy}{dx}-y )}^{2}} $

C) $ y\frac{dy}{dx}-x $

D) $ {{( y\frac{dy}{dx}-x )}^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

From the given relation $ \frac{y}{x}=\log x-\log (a+bx) $

Differentiating we get $ \frac{( x\frac{dy}{dx}-y )}{x^{2}}=\frac{1}{x}-\frac{1}{a+bx}b=\frac{a}{x(a+bx)} $

$ \therefore x\frac{dy}{dx}-y=\frac{ax}{a+bx} $

…..(i) Differentiating again w.r.t. x, we get $ x\frac{d^{2}y}{dx^{2}}+\frac{dy}{dx}-\frac{dy}{dx}=\frac{(a+bx)a-ax.b}{{{(a+bx)}^{2}}} $

Therefore $ x\frac{d^{2}y}{dx^{2}}=\frac{a^{2}}{{{(a+bx)}^{2}}} $

Therefore $ x^{3}\frac{d^{2}y}{dx^{2}}=\frac{a^{2}x^{2}}{{{(a+bx)}^{2}}}={{( x\frac{dy}{dx}-y )}^{2}} $ , [by (i)].