Differentiation Question 372

Question: If $ e^{y}+xy=e $ , then the value of $ \frac{d^{2}y}{dx^{2}} $ for $ x=0 $ , is

[Kurukshetra CEE 2002]

Options:

A) $ \frac{1}{e} $

B) $ \frac{1}{e^{2}} $

C) $ \frac{1}{e^{3}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ e^{y}+xy=e. $ Differentiating w.r.t. x, we get $ e^{y}\frac{dy}{dx}+y+x\frac{dy}{dx}=0 $

…..(i) Differentiating w.r.t. x, we get $ e^{y}\frac{d^{2}y}{dx^{2}}+e^{y}{{( \frac{dy}{dx} )}^{2}}+2\frac{dy}{dx}+x\frac{d^{2}y}{dx^{2}}=0 $ …..(ii) Putting $ x=0 $ in $ e^{y}+xy=e, $ we get $ y=1 $

Putting $ x=0,\ \ y=1 $ in (i), we get $ e\frac{dy}{dx}+1=0 $

Therefore $ \frac{dy}{dx}=-\frac{1}{e} $

Putting $ x=0,\ y=1,\ \frac{dy}{dx}=-\frac{1}{e} $ in (ii), we get
$ \therefore $ .