Differentiation Question 378

Question: $ \frac{d}{dx}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}= $

[AISSE 1985; DSSE 1986]

Options:

A) $ {{\sec }^{2}}x $

B) $ -{{\sec }^{2}}( \frac{\pi }{4}-x ) $

C) $ {{\sec }^{2}}( \frac{\pi }{4}+x ) $

D) $ {{\sec }^{2}}( \frac{\pi }{4}-x ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}=\frac{\cos x-\sin x}{\cos x+\sin x} $

$ =\frac{1-\tan x}{1+\tan x}=\tan ( \frac{\pi }{4}-x )\Rightarrow \frac{dy}{dx}=-{{\sec }^{2}}( \frac{\pi }{4}-x ) $ .