Differentiation Question 379

Question: If $ x=a\sin \theta $ and $ y=b $

$ \cos \theta , $ then $ \frac{d^{2}y}{dx^{2}} $ is

[UPSEAT 2002]

Options:

A) $ \frac{a}{b^{2}}{{\sec }^{2}}\theta $

B) $ \frac{-b}{a}{{\sec }^{2}}\theta $

C) $ \frac{-b}{a^{2}}{{\sec }^{3}}\theta $

D) $ \frac{-b}{a^{2}}{{\sec }^{3}}\theta $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dx}{d\theta }=a\cos \theta $ and $ \frac{dy}{d\theta }=-b\sin \theta $

Therefore $ \frac{dy}{dx}=\frac{-b}{a}\tan \theta $ and $ \frac{d^{2}y}{dx^{2}}=\frac{-b}{a}{{\sec }^{2}}\theta \frac{d\theta }{dx} $

Therefore $ \frac{d^{2}y}{dx^{2}}=\frac{-b}{a}{{\sec }^{2}}\theta \frac{1}{a\cos \theta }=\frac{-b}{a^{2}}{{\sec }^{3}}\theta $ .