Differentiation Question 38

Question: If $ y={x^{(x^{x})}} $ , then $ \frac{dy}{dx} $ is

Options:

A) $ y[ x^{x}(logex)logx+x^{x} ] $

B) $ y[ x^{x}(logex)logx+x ] $

C) $ y[ x^{x}(logex)logx+{x^{x-1}} ] $

D) $ y[ x^{x}(log _{e}x)logx+{x^{x-1}} ] $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ y={x^{(x^{x})}} $ Or $ \log y=x^{x}\log x $ Or $ \frac{1}{y}\frac{dy}{dx}=\frac{dz}{dx}\log x+\frac{1}{x}z $

(where $ x^{x}=z $ ) Or $ \frac{dy}{dx}={x^{(x^{x})}}[ x^{x}(log _{e}x)logx+{x^{x-1}} ] $

$ ( \therefore \frac{dz}{dx}=x^{x}{\log _{e}}x ) $