Differentiation Question 380

Question: If $ y={{( x+\sqrt{1+x^{2}} )}^{n}}, $ then $ (1+x^{2})\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx} $ is

[AIEEE 2002]

Options:

A) $ n^{2}y $

B) $ -n^{2}y $

C) $ -y $

D) $ 2x^{2}y $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{(x+\sqrt{1+x^{2}})}^{n}}\Rightarrow \frac{dy}{dx}=n{{(x+\sqrt{1+x^{2}})}^{n-1}}( 1+\frac{x}{\sqrt{1+x^{2}}} ) $

Therefore $ \frac{dy}{dx}=\frac{n{{(x+\sqrt{1+x^{2}})}^{n}}}{\sqrt{1+x^{2}}} $

Therefore $ (\sqrt{1+x^{2}})\frac{dy}{dx}=n{{(x+\sqrt{1+x^{2}})}^{n}} $

Therefore $ \frac{d^{2}y}{dx^{2}}.\sqrt{1+x^{2}}+\frac{dy}{dx}( \frac{x}{\sqrt{1+x^{2}}} ) $

$ =n^{2}{{( x+\sqrt{1+x^{2}} )}^{n-1}}( 1+\frac{x}{\sqrt{1+x^{2}}} ) $

Therefore $ (1+x^{2}).\frac{d^{2}y}{dx^{2}}+x.\frac{dy}{dx}=n^{2}{{(x+\sqrt{1+x^{2}})}^{n}} $

Therefore $ (1+x^{2})\frac{d^{2}y}{dx^{2}}+x.\frac{dy}{dx}=n^{2}y $ .