Differentiation Question 381

Question: If $ y={{\sin }^{-1}}\sqrt{(1-x)}+{{\cos }^{-1}}\sqrt{x} $ , then $ \frac{dy}{dx}= $

Options:

A) $ \frac{1}{\sqrt{x(1-x)}} $

B) $ \frac{-1}{\sqrt{x(1-x)}} $

C) $ \frac{1}{\sqrt{x(1+x)}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{\sin }^{-1}}\sqrt{1-x}={{\sin }^{-1}}\sqrt{1-{{(\sqrt{x})}^{2}}}={{\cos }^{-1}}\sqrt{x} $

$ \therefore y=2{{\cos }^{-1}}\sqrt{x} $ or $ \frac{dy}{dx}=2.\frac{-1}{\sqrt{1-x}}.\frac{1}{2\sqrt{x}} $ etc. Aliter: $ y={{\sin }^{-1}}\sqrt{1-x}+{{\cos }^{-1}}\sqrt{x} $

Therefore $ \frac{dy}{dx}=\frac{1}{\sqrt{1-1+x}}.\frac{-1}{2\sqrt{1-x}}-\frac{1}{\sqrt{1-x}}.\frac{1}{2\sqrt{x}} $

$ =\frac{-2}{2\sqrt{x}\sqrt{1-x}}=\frac{-1}{\sqrt{x}\sqrt{1-x}} $ .