Differentiation Question 382

Question: If $ \sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y) $ , then $ \frac{dy}{dx}= $

[MNR 1983; ISM Dhanbad 1987; RPET 1991]

Options:

A) $ \sqrt{\frac{1-x^{2}}{1-y^{2}}} $

B) $ \sqrt{\frac{1-y^{2}}{1-x^{2}}} $

C) $ \sqrt{\frac{x^{2}-1}{1-y^{2}}} $

D) $ \sqrt{\frac{y^{2}-1}{1-x^{2}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Putting $ x=\sin \theta $ and $ y=\sin \varphi $

$ \cos \theta +\cos \varphi =a(\sin \theta -\sin \varphi ) $

Therefore $ 2\cos \frac{\theta +\varphi }{2}\cos \frac{\theta -\varphi }{2}=a{ 2\cos \frac{\theta +\varphi }{2}\sin \frac{\theta -\varphi }{2} } $

Therefore $ \frac{\theta -\varphi }{2}={{\cot }^{-1}}a\Rightarrow \theta -\varphi =2{{\cot }^{-1}}a $

Therefore $ {{\sin }^{-1}}x-{{\sin }^{-1}}y=2{{\cot }^{-1}}a $

Therefore $ \frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}}\frac{dy}{dx}=0\Rightarrow \frac{dy}{dx}=\sqrt{\frac{1-y^{2}}{1-x^{2}}} $ .