Differentiation Question 383
$ f(x) $ and $ g(x) $ are two differentiable functions on $ [0,2] $ such that $ f’’(x)-g’’(x)=0,f’(1)=2,g’(1)=4 $ , $ f(2)=3 $ , $ g(2)=9, $ then $ f(x)-g(x) $ at $ x=3/2 $ is
[AIEEE 2002]
Options:
0
2
10
- 5
Show Answer
Answer:
Correct Answer: D
Solution:
$ {}^{( x\frac{dy}{dx}-y )}/ _{x^{2}=\frac{1}{x}-\frac{1}{a+bx}} b=\frac{a}{x(a+bx)}$
Integrate w.r.t. x, $ {f}’(x)-{g}’(x)=c $
At $ x=1 $ , $ {f}’(1)-{g}’(1)=c $
Therefore $ 2-4=-2 $
Therefore $ c=-2 $
Hence, $ {f}’(x)-{g}’(x)=-2 $ . Again integrate w.r.t. x, $ f(x)-g(x)=-2x+c_1 $ . At $ x=2 $ , $ f(2)-g(2)=-2\times 2+c_1 $
Therefore $ 3-9+4=c_1 $
Therefore $ c_1=-2 $
Then $ f(x)-g(x)=-2x-2=-(2x+2) $
$ f(3/2)-g(3/2)=-( 2\times \frac{3}{2}+2 )=-5 $ .
 BETA
  BETA 
             
             
           
           
           
          