Differentiation Question 385

Question: If $ y=a\cos (\log x)+b\sin (\log x) $ where $ a,b $ are parameters then $ x^{2}{y}’’+x{y}’= $

[EAMCET 2002]

Options:

A) $ y $

B) $ -y $

C) $ 2y $

D) $ -2y $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=a\cos (\log x)+b\sin (\log x) $

Therefore $ y’=\frac{-a\sin (\log x)}{x}+\frac{b\cos (\log x)}{x} $

Therefore $ xy’=-a\sin (\log x)+b\cos (\log x) $

Therefore $ x{y}’’+{y}’=\frac{-a\cos (\log x)}{x}-\frac{b\sin (\log x)}{x} $

Therefore $ x^{2}{y}’’+x{y}’=-[a\cos (\log x)+b\sin (\log x)] $

Therefore $ x^{2}y’’+xy’=-y. $