Differentiation Question 386

Question: If $ u=x^{2}+y^{2} $ and $ x=s+3t, $

$ y=2s-t, $ then $ \frac{d^{2}u}{ds^{2}}= $

[Orissa JEE 2002]

Options:

A) 12

B) 32

C) 36

D) 10

Show Answer

Answer:

Correct Answer: D

Solution:

$ u=x^{2}+y^{2}, $

$ x=s+3t, $

$ y=2s-t $

Now $ \frac{dx}{ds}=1, $

$ \frac{dy}{ds}=2 $

…..(i) $ \frac{d^{2}x}{ds^{2}}=0, $

$ \frac{d^{2}y}{ds^{2}}=0 $

……(ii) Now $ u=x^{2}+y^{2} $ , $ \frac{du}{ds}=2x.\frac{dx}{ds}+2y.\frac{dy}{ds} $

$ \frac{d^{2}u}{ds^{2}}=2{{( \frac{dx}{ds} )}^{2}}+2x\frac{d^{2}x}{ds^{2}}+2{{( \frac{dy}{ds} )}^{2}}+2y( \frac{d^{2}y}{ds^{2}} ) $

From (i) and (ii), $ \frac{d^{2}u}{ds^{2}}=2\times 1+0+2\times 4+0=10 $ .