Differentiation Question 389

Question: $ \frac{d^{2}}{dx^{2}}(2\cos x\cos 3x)= $

[RPET 2003]

Options:

A) $ 2^{2}(\cos 2x+2^{2}\cos 4x) $

B) $ 2^{2}(\cos 2x-2^{2}\cos 4x) $

C) $ 2^{2}(-\cos 2x+2^{2}\cos 4x) $

D) $ -2^{2}(\cos 2x+2^{2}\cos 4x) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=2\cos x\cos 3x $

$ \frac{dy}{dx}=2\cos x.(-3\sin 3x)+2\cos 3x(-\sin x) $

$ =-3(\sin 4x+\sin 2x)+(-1)[\sin 4x+\sin (-2x)] $

$ \frac{d^{2}y}{dx^{2}}=-3(4\cos 4x+2\cos 2x)-1(4\cos 4x-2\cos 2x) $

$ =-16\cos 4x-4\cos 2x $

$ =-4(\cos 2x+4\cos 4x) $

$ =-2^{2}(\cos 2x+2^{2}\cos 4x) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें