Differentiation Question 389

Question: $ \frac{d^{2}}{dx^{2}}(2\cos x\cos 3x)= $

[RPET 2003]

Options:

A) $ 2^{2}(\cos 2x+2^{2}\cos 4x) $

B) $ 2^{2}(\cos 2x-2^{2}\cos 4x) $

C) $ 2^{2}(-\cos 2x+2^{2}\cos 4x) $

D) $ -2^{2}(\cos 2x+2^{2}\cos 4x) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=2\cos x\cos 3x $

$ \frac{dy}{dx}=2\cos x.(-3\sin 3x)+2\cos 3x(-\sin x) $

$ =-3(\sin 4x+\sin 2x)+(-1)[\sin 4x+\sin (-2x)] $

$ \frac{d^{2}y}{dx^{2}}=-3(4\cos 4x+2\cos 2x)-1(4\cos 4x-2\cos 2x) $

$ =-16\cos 4x-4\cos 2x $

$ =-4(\cos 2x+4\cos 4x) $

$ =-2^{2}(\cos 2x+2^{2}\cos 4x) $ .