Differentiation Question 39

Question: If $ y={{( x+\sqrt{x^{2}+a^{2}} )}^{n}} $ , then $ \frac{dy}{dx} $ is

Options:

A) $ \frac{ny}{\sqrt{x^{2}+a^{2}}} $

B) $ -\frac{ny}{\sqrt{x^{2}+a^{2}}} $

C) $ \frac{nx}{\sqrt{x^{2}+a^{2}}} $

D) $ -\frac{nx}{\sqrt{x^{2}+a^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \frac{dy}{dx}=\frac{d}{dx}[ {{(x+\sqrt{x^{2}+a^{2}})}^{n}} ] $

$ =n{{( x+\sqrt{x^{2}+a^{2}} )}^{n-1}}.\frac{d}{dx}( x+\sqrt{x^{2}+a^{2}} ) $

$ =n{{( x+\sqrt{x^{2}+a^{2}} )}^{n-1}}( \frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}+a^{2}}} ) $

$ =\frac{n{{(x+\sqrt{x^{2}+a^{2}})}^{n}}}{\sqrt{x^{2}+a^{2}}} $

$ =\frac{ny}{\sqrt{n^{2}+a^{2}}} $