Differentiation Question 391

Question: If $ y=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}- $ ….., then $ \frac{d^{2}y}{dx^{2}}= $

[Karnataka CET 2003]

Options:

A) $ x $

B) $ -x $

C) $ -y $

D) $ y $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=1-x+\frac{x^{2}}{(2)!}-\frac{x^{2}}{(3)!}+………… $

Therefore $ y={e^{-x}} $

Therefore $ \frac{dy}{dx}={e^{-x}}(-1) $

and $ \frac{d^{2}y}{dx^{2}}=(-1){{e^{-x}}.(-1)} $

$ ={e^{-x}}=y $ .