Differentiation Question 392

Question: If $ f(x) $ is a differentiable function and $ {f}’’(0)=a $ then $ \underset{x\to 0}{\mathop{\lim }}\frac{2f(x)-3f(2x)+f(4x)}{x^{2}} $ is

[Orissa JEE 2004]

Options:

A) 3a

B) 2a

C) 5a

D) 4a

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{2f(x)-3f(2x)+f(4x)}{x^{2}} $

Using L-Hospital’s rule twice, we get $ \underset{x\to 0}{\mathop{\lim }}\frac{2f’’(x)-3.2.2f’’(2x)+4.4f’’(4x)}{2}=3a $ { $ \because $ Given $ f’’(0)=a $ }.