Differentiation Question 399

Question: Let $ f(x)= \begin{vmatrix} x^{3} & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \\ \end{vmatrix} $ , where p is a constant. Then $ \frac{d^{3}}{dx^{3}}{ f(x) } $ at $ x=0 $ is

[IIT 1997 Cancelled]

Options:

A) p

B) $ p+p^{2} $

C) $ p+p^{3} $

D) Independent of p

Show Answer

Answer:

Correct Answer: D

Solution:

$ {f}’’’(x)= \begin{vmatrix} \frac{d^{3}}{dx^{3}}x^{3} & \frac{d^{3}}{dx^{3}}\sin x & \frac{d^{3}}{dx^{3}}\cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \\ \end{vmatrix} = \begin{vmatrix} 6 & -\cos x & \sin x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \\ \end{vmatrix} $

$ \therefore {f}’’’(0)= \begin{vmatrix} 6 & -1 & 0 \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \\ \end{vmatrix} =0 $ , which is independent of p.